Processing math: 100%

বৃত্তের ক্ষেত্রফল ও পরিধি নির্ণয়ের সূত্র

পৃথিবীতে বিভিন্ন বিপ্লব ঘটার ক্ষেত্রে বৃত্তের অবদান অনেক। চাকা আবিষ্কার থেকে শুরু করে বিভিন্ন আকাশছোঁয়া অট্টালিকা তৈরি করার ক্ষেত্রে বৃত্তের ভূমিকা অপরিসীম। জ্যামিতিতে সবথেকে গুরুত্বপূর্ণ আকৃতি গুলোর মধ্যে বৃত্তের ব্যবহার সবথেকে বেশি।

তাই বিভিন্ন পরীক্ষা থেকে শুরু করে বাস্তব জীবনেও বৃত্ত সম্পর্কিত বিভিন্ন সমস্যার সমাধান করতে পারাটা আমাদের জন্য অনেক বেশি প্রয়োজন। ছোটবেলা থেকে বৃত্তের সঙ্গে আমাদের গণিত ও বিজ্ঞান বিষয়টা ওতপ্রোতভাবে জড়িত ছিল। গণিত ও বিজ্ঞান নিয়ে কাজ করতে হলে অবশ্যই বৃত্ত সম্পর্কিত সাধারণ বিষয়গুলোকে জানতে হবে। নিম্নে আমরা বৃত্ত সম্পর্কিত বিভিন্ন সূত্র ও সংজ্ঞা উপস্থাপন করছি সচিত্র উদাহরণসহ।

বৃত্তের ক্ষেত্রফল ও পরিধি নির্ণয়ের সূত্র

বৃত্ত কাকে বলে?

বক্ররেখার দ্বারা আবদ্ধ একটি সমতল চিত্র যার মধ্যে একটি নির্দিষ্ট বিন্দু থেকে সীমানা রেখা পর্যন্ত আঁকা সমস্ত সরল রেখা সমান হয় তাকে বৃত্ত বলে। একটি নির্দিষ্ট বিন্দু থেকে বৃত্তের বক্র রেখার প্রতিটি বিন্দু সমান দূরত্বে অবস্থান করতে হবে। এই বিন্দুটি বৃত্তের ভিতরে অবস্থান করবে এবং বক্ররেখা যে বিন্দুগুলো দিয়ে তৈরি হয়েছে সেগুলো থেকে এর দূরত্ব সর্বদা সমান থাকবে। নিম্নে একটি চিত্রের মাধ্যমে এই বিষয়টিকে দেখানো হলো:

বৃত্তের ক্ষেত্রফল ও পরিধি

বৃত্তের কেন্দ্র বা কেন্দ্রবিন্দু কাকে বলে?

বৃত্তের মধ্যে যে বিন্দু থেকে সীমানা রেখা পর্যন্ত আঁকা সমস্ত সরল রেখা সমান হয় তাকে বৃত্তের কেন্দ্র বা কেন্দ্রবিন্দু বলে। কেন্দ্র থেকে বৃত্তের বক্ররেখার দূরত্বকে ব্যাসার্ধ বলা হয়ে থাকে। ব্যাসার্ধের দ্বিগুণকে বলা হয়ে থাকে ব্যাস। মূলত একটি বৃত্তের এই সকল তথ্য দ্বারা বিভিন্ন বিষয়কে হিসাব করা যায়। নিম্নে আমরা তার বেশ কিছু উদাহরণ আপনাদের সামনে উপস্থাপন করলাম।

বৃত্তের ক্ষেত্রফল নির্ণয়ের সূত্র

বৃত্তের ক্ষেত্রফল নির্ণয়ের সূত্রটি হল πr² যেখানে r হচ্ছে বৃত্তের ব্যাসার্ধ এবং π হচ্ছে একটি ধ্রুবক বা constant যার মান 3.1416 প্রায়। একটি বৃত্তের ব্যাস বা ব্যাসার্ধ জানলে আমরা খুব সহজে সেই বৃত্তটির ক্ষেত্রফল নির্ণয় করতে পারব।

বৃত্তের ক্ষেত্রফল A=πr2

ধরুন একটি বৃত্তের ব্যাস দেওয়া রয়েছে 5 সেন্টিমিটার, এক্ষেত্রে আপনাকে বৃত্তটির ক্ষেত্রফল নির্ণয় করতে হবে। নিম্নে আমরা আপনাকে দেখাচ্ছি কিভাবে আপনি ক্ষেত্রফল নির্ণয় করতে পারবেন।

প্রথমে ব্যাস কে ব্যাসার্ধ পরিণত করতে হবে অর্থাৎ ব্যাসকে দুই দিয়ে ভাগ করলে আমরা ব্যাসার্ধ পাব। অর্থাৎ আমরা পাই বৃত্তটির ব্যাসার্ধ 2.5 সেন্টিমিটার। এখন আমরা হিসাব করলে পাব:

বৃত্তের ক্ষেত্রফল A=πr2
A=π(2.5)2
A=19.63495
অর্থাৎ বৃত্তের ক্ষেত্রফল 19.63 বর্গসেন্টিমিটার।

এই পদ্ধতিতে আমরা যে কোন বৃত্তের ব্যাস অথবা ব্যাসার্ধ জানার মাধ্যমে খুব সহজে তার ক্ষেত্রফল নির্ণয় করতে পারব। বৃত্তের ক্ষেত্রফল নির্ণয় করা অনেক রকমের গণিতে প্রয়োজন হয়ে থাকে। এমনকি বড় বড় গাণিতিক সমস্যা সমাধানের ক্ষেত্রে এর ব্যবহার হয়ে থাকে।

বৃত্তের পরিধি নির্ণয়ের সূত্র

বৃত্তের পরিধি নির্ণয়ের সূত্রটি হল 2πr যেখানে r হচ্ছে বৃত্তের ব্যাসার্ধ এবং π হচ্ছে একটি ধ্রুবক বা constant যার মান 3.1416 প্রায়। একটি বৃত্তের ব্যাস বা ব্যাসার্ধ জানলে আমরা খুব সহজে সেই বৃত্তটির পরিধি নির্ণয় করতে পারব।

বৃত্তের পরিধি C=2πr

ধরুন একটি বৃত্তের ব্যাস দেওয়া রয়েছে 10 সেন্টিমিটার, এক্ষেত্রে আপনাকে বৃত্তটির পরিধি নির্ণয় করতে হবে। নিম্নে আমরা আপনাকে দেখাচ্ছি কিভাবে আপনি পরিধি নির্ণয় করতে পারবেন।

প্রথমে ব্যাস কে ব্যাসার্ধ পরিণত করতে হবে অর্থাৎ ব্যাসকে দুই দিয়ে ভাগ করলে আমরা ব্যাসার্ধ পাব। অর্থাৎ আমরা পাই বৃত্তটির ব্যাসার্ধ 5 সেন্টিমিটার। এখন আমরা হিসাব করলে পাব:

বৃত্তের পরিধি C=2πr
C=2π(5)
C=31.41593
C31.42
অর্থাৎ বৃত্তের পরিধি 31.42 সেন্টিমিটার।

এই পদ্ধতিতে আমরা যে কোন বৃত্তের ব্যাস অথবা ব্যাসার্ধ জানার মাধ্যমে খুব সহজে তার পরিধি নির্ণয় করতে পারব। বৃত্তের পরিধি নির্ণয় করা অনেক রকমের গণিতে প্রয়োজন হয়ে থাকে। এমনকি বড় বড় গাণিতিক সমস্যা সমাধানের ক্ষেত্রে এর ব্যবহার হয়ে থাকে।

এছাড়া বৃত্ত সম্পর্কিত যে কোন প্রশ্ন থাকলে আমাদেরকে কমেন্টে জানাতে পারেন, আমরা যথা সম্ভব উত্তর দেওয়ার চেষ্টা করব। আমাদের ওয়েবসাইটটিতে আরো অনেক এমন তথ্য রয়েছে যেগুলো আপনাকে সাহায্য করবে। আমাদের এই ওয়েবসাইটটিকে ঘুরে দেখার আমন্ত্রণ রইল, আশা করি আপনি তথ্যবহুল অনেক আর্টিকেল খুঁজে পাবেন।

আরও পড়ুন: নিউটনের গতি সূত্র | Newton's Law of Motion

এই লেখাটি আপনার সোশ্যাল মিডিয়া ওয়ালে শেয়ার করুন 😇 হয়তো এমনও হতে পারে আপনার শেয়ার করা এই লেখাটির মাধ্যমে অন্য কেউ উপকৃত হচ্ছে! এবং কারো উপকার করার থেকে ভাল আর কি হতে পারে?🥺

Sakib Mahmud

Hello, there! I am Sakib Mahmud from Bangladesh. Studying Computer Science and Engineering. I love to write articles!

Previous Post Next Post
💬